Title of article :
Laplace transform and Hyers–Ulam stability of linear differential equations
Author/Authors :
Rezaei، نويسنده , , Hamid and Jung، نويسنده , , Soon-Mo and Rassias، نويسنده , , Themistocles M. Rassias، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
8
From page :
244
To page :
251
Abstract :
In this paper, we prove the Hyers–Ulam stability of a linear differential equation of the n th order. More precisely, applying the Laplace transform method, we prove that the differential equation y ( n ) ( t ) + ∑ k = 0 n − 1 α k y ( k ) ( t ) = f ( t ) has Hyers–Ulam stability, where α k is a scalar, y and f are n times continuously differentiable and of exponential order, respectively.
Keywords :
Laplace Transform method , Laplace transform , differential equation , approximation , Hyers–Ulam stability
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563594
Link To Document :
بازگشت