Title of article :
On the number of limit cycles of a perturbed cubic polynomial differential center
Author/Authors :
Li، نويسنده , , Shimin and Zhao، نويسنده , , Yulin and Li، نويسنده , , Jun، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Abstract :
For ε sufficiently small, we consider the planar polynomial differential system x ̇ = − y ( y 2 + A x 2 + B x + C ) + ε P ( x , y ) , y ̇ = x ( y 2 + A x 2 + B x + C ) + ε Q ( x , y ) , where P ( x , y ) and Q ( x , y ) are polynomials of degree n . By using the averaging method of first order, we bound the number of limit cycles that can bifurcate from period annulus of the unperturbed system.
Keywords :
limit cycle , Averaging method , Polynomial differential system
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications