Title of article :
Maximal surface area of a convex set in with respect to exponential rotation invariant measures
Author/Authors :
Livshyts، نويسنده , , Galyna، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
8
From page :
231
To page :
238
Abstract :
Let p be a positive number. Consider the probability measure γ p with density φ p ( y ) = c n , p e − | y | p p . We show that the maximal surface area of a convex body in R n with respect to γ p is asymptotically equivalent to C ( p ) n 3 4 − 1 p , where the constant C ( p ) depends on p only. This is a generalization of results due to Ball (1993) [1] and Nazarov (2003) [9] in the case of the standard Gaussian measure γ 2 .
Keywords :
Surface area , Convex polytopes , Gaussian measures , Convex bodies
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563656
Link To Document :
بازگشت