Title of article :
On spherical expansions of smooth -zonal functions on the unit sphere in
Author/Authors :
Bezubik، نويسنده , , Agata and Strasburger، نويسنده , , Aleksander، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
9
From page :
570
To page :
578
Abstract :
We give a self-contained presentation of a novel approach to the spherical harmonic expansions of smooth zonal functions defined on the unit sphere in C n . The main new result is a formula expressing the coefficients of the expansion in terms of the Taylor coefficients of the profile function. This enables us to give a new form of the classical Funk–Hecke formula for the case of complex spheres. As another application we give a new derivation the spherical harmonic expansion for the Poisson–Szegö kernel for the unit ball in C n obtained originally by Folland.
Keywords :
Laplace operator , Bihomogeneous spherical harmonics , Zonal harmonic polynomials , Jacobi polynomials , Poisson–Szeg? kernel , Funk–Hecke formula
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563683
Link To Document :
بازگشت