Title of article :
On the Laplacian coefficients of tricyclic graphs
Author/Authors :
Pai، نويسنده , , Xinying and Liu، نويسنده , , Sanyang and Guo، نويسنده , , Jiming، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
9
From page :
200
To page :
208
Abstract :
Let Φ ( G , λ ) = d e t ( λ I n − L ( G ) ) = ∑ k = 0 n ( − 1 ) k c k λ n − k be the characteristic polynomial of the Laplacian matrix of a graph G of order n . In this paper, we show that among all connected tricyclic graphs of order n , the k th coefficient c k is smallest when the graph is B n , 7 ( 1 ) 3 , 3 , 3 (obtained from the complete graph K 4 by adding n − 4 pendent vertices attached to the vertex of degree 3). And for some lemmas in [C. X. He, H. Y. Shan, On the Laplacian coefficients of bicyclic graphs, Discrete Math. 310 (2010) 3404–3412], we present a new method to prove them.
Keywords :
Tricyclic graphs , Laplacian coefficients , Laplacian-like energy
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563701
Link To Document :
بازگشت