Title of article :
The Cauchy problem of a periodic higher order KdV equation in analytic Gevrey spaces
Author/Authors :
Gorsky، نويسنده , , J. and Himonas، نويسنده , , A. Alexandrou and Holliman، نويسنده , , C. and Petronilho، نويسنده , , G.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
13
From page :
349
To page :
361
Abstract :
This paper studies the periodic Cauchy problem for a KdV equation whose dispersion is of order m = 2 j + 1 , where j is a positive integer, (KdVm). Using Bourgain–Gevrey type analytic spaces and appropriate bilinear estimates, it is shown that local in time well-posedness holds when the initial data belong to an analytic Gevrey spaces of order σ . This implies that in the space variable the regularity of the solution remains the same with that of the initial data. It also implies that the size of the uniform radius of analyticity is preserved. Moreover, the solution is not necessarily G σ in time. However, it belongs to G m σ ( R ) near zero for every x on the circle.
Keywords :
initial value problem , Uniform radius of analyticity , sobolev spaces , well-posedness , Bilinear estimates , Analytic Gevrey spaces , Bourgain spaces , KdV equation , Higher dispersion
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563718
Link To Document :
بازگشت