Title of article :
An isometric study of the Lindeberg–Feller central limit theorem via Stein’s method
Author/Authors :
Els Berckmoes، نويسنده , , B. and Lowen، نويسنده , , R. and Van Casteren، نويسنده , , J.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
15
From page :
484
To page :
498
Abstract :
We use Stein’s method to prove a generalization of the Lindeberg–Feller CLT providing an upper and a lower bound for the superior limit of the Kolmogorov distance between a normally distributed random variable and the rowwise sums of a rowwise independent triangular array of random variables which is asymptotically negligible in the sense of Feller. A natural example shows that the upper bound is of optimal order. The lower bound improves a result by Andrew Barbour and Peter Hall.
Keywords :
Limit , Random variable , law , Weak topology , Central Limit Theorem , Lindeberg condition , distance , Kolmogorov metric , triangular array , Approach structure , Probability measure
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563730
Link To Document :
بازگشت