Title of article :
The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie–Gower predator–prey model with Holling-type II functional responses
Author/Authors :
Zhou، نويسنده , , Jun and Shi، نويسنده , , Junping، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Abstract :
In this paper, we revisit a diffusive Leslie–Gower predator–prey model with Holling-type II functional responses and Dirichlet boundary condition. It is shown that multiple positive steady state solutions exist under certain conditions on the parameters, while for another parameter region, the positive steady state solution is unique and locally asymptotically stable. Results are proved by using bifurcation theory, fixed point index theory, energy estimates and asymptotic behavior analysis.
Keywords :
Leslie–Gower predator–prey model , Positive steady state solutions , multiplicity , Uniqueness , stability
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications