Title of article :
Wavelets and the well-posedness of incompressible magneto-hydrodynamic equations in Besov type -space
Author/Authors :
Li، نويسنده , , Pengtao and Yang، نويسنده , , Qixiang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
26
From page :
661
To page :
686
Abstract :
In this paper, we introduce a class of Besov type Q -spaces B ̇ p , p γ 1 , γ 2 ( R n ) to study the well-posedness of the fractional magneto-hydrodynamic (FMHD) equations. Applying wavelets and multi-resolution analysis, we obtain the boundedness of a semigroup operator from B ̇ p , p γ 1 , γ 2 ( R n ) to some tent spaces B p , m , m ′ γ 1 , γ 2 . As an application, we prove the global well-posedness of equations (FMHD) with data in B ̇ p , p γ 1 , γ 2 ( R n ) . Compared with the method of Fourier transform, the advantage of our method can be applied to the well-posedness with initial data in B ̇ p , p γ 1 , γ 2 ( R n ) , where p ≠ 2 .
Keywords :
wavelets , Besov type Q -spaces , well-posedness , Magneto-hydrodynamic equations
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563745
Link To Document :
بازگشت