Title of article :
On properties of meromorphic solutions for difference equations concerning gamma function
Author/Authors :
Chen، نويسنده , , Zong-Xuan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
11
From page :
147
To page :
157
Abstract :
In this paper, we mainly consider the properties of differences of meromorphic solutions for the difference equation a 1 ( z ) f ( z + 1 ) + a 0 ( z ) f ( z ) = 0 concerning a Gamma function, where a 1 ( z ) and a 0 ( z ) are nonzero polynomials. By these properties, we deduce that a Gamma function satisfies that for every n ∈ N , λ ( Δ n Γ ( z ) ) = λ ( Γ ( z ) ) = 0 , Δ n Γ ( z ) has only n zeros , τ ( Γ ( z ) ) = τ ( Δ Γ ( z ) ) = τ ( Γ ( z + j ) ) = σ ( Γ ( z ) ) = 1 ( j = 0 , 1 , … ) , λ ( Δ n 1 Γ ( z ) ) = λ ( 1 Γ ( z ) ) = 1 , Δ n 1 Γ ( z ) and 1 Γ ( z ) have same zeros, at most except n exceptional zeros, where σ ( g ) denotes the order of growth of a meromorphic function g , and τ ( g ) and λ ( g ) denote the exponents of convergence of fixed points and zeros of g respectively.
Keywords :
Shift , Fixed point , Difference , Meromorphic function , Complex difference equation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563770
Link To Document :
بازگشت