Title of article :
The Lipschitz metric for real-valued continuous functions
Author/Authors :
Beer، نويسنده , , Gerald and Hoffman، نويسنده , , Michael J.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Abstract :
For a continuous real function f defined on a metric space X , let α ( f ) denote its minimal Lipschitz constant if f is Lipschitz and put α ( f ) = ∞ otherwise. We study the extended real-valued metric on the continuous real functions defined by d ( f , g ) = max { | f ( x 0 ) − g ( x 0 ) | , α ( f − g ) } . When X = [ a , b ] this metric provides new insight into a classical result regarding the derivative of a limit of a sequence of real-valued functions defined on the interval.
Keywords :
Function space , Lipschitz norm , Differentiability of a limit of a sequence of real functions , Arzelà–Ascoli theorem , Uniform convergence on bounded subsets , Bornology , Lipschitz function
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications