Title of article :
Summability of formal solutions of linear partial differential equations with divergent initial data
Author/Authors :
Michalik، نويسنده , , S?awomir، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
18
From page :
243
To page :
260
Abstract :
We study the Cauchy problem for a general homogeneous linear partial differential equation in two complex variables with constant coefficients and with divergent initial data. We state necessary and sufficient conditions for the summability of formal power series solutions in terms of properties of divergent Cauchy data. We consider both the summability in one variable t (with coefficients belonging to some Banach space of Gevrey series with respect to the second variable z ) and the summability in two variables ( t , z ) . The results are presented in the general framework of moment-PDEs.
Keywords :
Linear PDEs with constant coefficients , Moment functions , multisummability , Borel summability , Gevrey order , Moment-PDEs , formal power series
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563779
Link To Document :
بازگشت