Title of article :
On complex symmetric operator matrices
Author/Authors :
Jung، نويسنده , , Sungeun and Ko، نويسنده , , Eungil and Lee، نويسنده , , Ji Eun، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
13
From page :
373
To page :
385
Abstract :
An operator T ∈ L ( H ) is said to be complex symmetric if there exists a conjugation J on H such that T = J T ∗ J . In this paper, we find several kinds of complex symmetric operator matrices and examine decomposability of such complex symmetric operator matrices and their applications. In particular, we consider the operator matrix of the form T = ( A B 0 J A ∗ J ) where J is a conjugation on H . We show that if A is complex symmetric, then T is decomposable if and only if A is. Furthermore, we provide some conditions so that a -Weyl’s theorem holds for the operator matrix T .
Keywords :
Complex symmetric operator , Property (beta) , Decomposable , a-Weyl’s theorem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563792
Link To Document :
بازگشت