Title of article :
Linear maps preserving numerical radius of tensor products of matrices
Author/Authors :
Fo?ner، نويسنده , , Ajda and Huang، نويسنده , , Zejun and Li، نويسنده , , Chi-Kwong and Sze، نويسنده , , Nung-Sing Sze، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
7
From page :
183
To page :
189
Abstract :
Let m , n ≥ 2 be positive integers. Denote by M m the set of m × m complex matrices and by w ( X ) the numerical radius of a square matrix X . Motivated by the study of operations on bipartite systems of quantum states, we show that a linear map ϕ : M m n → M m n satisfies w ( ϕ ( A ⊗ B ) ) = w ( A ⊗ B ) for all  A ∈ M m  and  B ∈ M n if and only if there is a unitary matrix U ∈ M m n and a complex unit ξ such that ϕ ( A ⊗ B ) = ξ U ( φ 1 ( A ) ⊗ φ 2 ( B ) ) U ∗ for all  A ∈ M m  and  B ∈ M n , where φ k is the identity map or the transposition map X ↦ X t for k = 1 , 2 , and the maps φ 1 and φ 2 will be of the same type if m , n ≥ 3 . In particular, if m , n ≥ 3 , the map corresponds to an evolution of a closed quantum system (under a fixed unitary operator), possibly followed by a transposition. The results are extended to multipartite systems.
Keywords :
Complex matrix , Linear preserver , Numerical range , Numerical radius , Tensor product
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563821
Link To Document :
بازگشت