Title of article :
Almost automorphic solutions of non-autonomous difference equations
Author/Authors :
Lizama، نويسنده , , Carlos H. Mesquita، نويسنده , , Jaqueline G.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
11
From page :
339
To page :
349
Abstract :
In the present paper, we study the non-autonomous difference equations given by u ( k + 1 ) = A ( k ) u ( k ) + f ( k ) and u ( k + 1 ) = A ( k ) u ( k ) + g ( k , u ( k ) ) for k ∈ Z , where A ( k ) is a given non-singular n × n matrix with elements a i j ( k ) , 1 ≤ i , j ≤ n , f : Z → E n is a given n × 1 vector function, g : Z × E n → E n and u ( k ) is an unknown n × 1 vector with components u i ( k ) , 1 ≤ i ≤ n . We obtain the existence of a discrete almost automorphic solution for both the equations, assuming that A ( k ) and f ( k ) are discrete almost automorphic functions and the associated homogeneous system admits an exponential dichotomy. Also, assuming the function g satisfies a global Lipschitz type condition, we prove the existence and uniqueness of an almost automorphic solution of the nonlinear difference equation.
Keywords :
Almost automorphic functions , Non-autonomous equations , exponential dichotomy
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563836
Link To Document :
بازگشت