Title of article :
Interfaces supporting surface gap soliton ground states in the 1D nonlinear Schrِdinger equation
Author/Authors :
Dohnal، نويسنده , , Tom?? and Nagatou، نويسنده , , Kaori and Plum، نويسنده , , Michael and Reichel، نويسنده , , Wolfgang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2013
Pages :
11
From page :
425
To page :
435
Abstract :
We consider the problem of verifying the existence of H 1 ground states of the 1D nonlinear Schrödinger equation for an interface of two periodic structures: − u ″ + V ( x ) u − λ u = Γ ( x ) | u | p − 1 u on  R with V ( x ) = V 1 ( x ) , Γ ( x ) = Γ 1 ( x ) for x ≥ 0 and V ( x ) = V 2 ( x ) , Γ ( x ) = Γ 2 ( x ) for x < 0 . Here V 1 , V 2 , Γ 1 , Γ 2 are periodic, λ < min σ ( − d 2 d x 2 + V ) , and p > 1 . The article [T. Dohnal, M. Plum, W. Reichel, Surface gap soliton ground states for the nonlinear Schrödinger equation, Comm. Math. Phys. 308 (2011) 511–542] provides for the 1D case an existence criterion in the form of an integral inequality involving the linear potentials V 1 , V 2 and the Bloch waves of the operators − d 2 d x 2 + V 1 , 2 − λ . We choose here the classes of piecewise constant and piecewise linear potentials V 1 , 2 and check this criterion for a set of parameter values. For the piecewise constant case the Bloch waves are calculated explicitly and for the piecewise linear case verified enclosures of the Bloch waves are computed numerically. The integrals in the criterion are evaluated via interval arithmetic, so rigorous existence statements are produced. Examples of interfaces supporting ground states are reported including ones for which ground state existence follows for all periodic Γ 1 , 2 with ess sup Γ 1 , 2 > 0 .
Keywords :
Verified numerical enclosures , Periodic material , ground state , Interface , Surface gap soliton , Nonlinear Schrِdinger equation , variational methods
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2013
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563843
Link To Document :
بازگشت