Title of article :
Compactness of the -Neumann operator and commutators of the Bergman projection with continuous functions
Author/Authors :
Celi?k، نويسنده , , Mehmet and ?ahuto?lu، نويسنده , , S?nmez، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
6
From page :
393
To page :
398
Abstract :
Let Ω be a bounded pseudoconvex domain in C n , n ≥ 2 , 0 ≤ p ≤ n , and 1 ≤ q ≤ n − 1 . We show that compactness of the ∂ ¯ -Neumann operator, N p , q + 1 , on square integrable ( p , q + 1 ) -forms is equivalent to compactness of the commutators [ P p , q , z ¯ j ] on square integrable ∂ ¯ -closed ( p , q ) -forms for 1 ≤ j ≤ n where P p , q is the Bergman projection on ( p , q ) -forms. We also show that compactness of the commutator of the Bergman projection with bounded functions percolates up in the ∂ ¯ -complex on ∂ ¯ -closed forms and square integrable holomorphic forms.
Keywords :
Bergman projection , ? ¯ -Neumann operator , Hankel operators , Pseudoconvex domain
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1563970
Link To Document :
بازگشت