Title of article :
Connections between discriminants and the root distribution of polynomials with rational generating function
Author/Authors :
Tran، نويسنده , , Khang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
11
From page :
330
To page :
340
Abstract :
Let H m ( z ) be a sequence of polynomials whose generating function ∑ m = 0 ∞ H m ( z ) t m is the reciprocal of a bivariate polynomial D ( t , z ) . We show that in the three cases D ( t , z ) = 1 + B ( z ) t + A ( z ) t 2 , D ( t , z ) = 1 + B ( z ) t + A ( z ) t 3 and D ( t , z ) = 1 + B ( z ) t + A ( z ) t 4 , where A ( z ) and B ( z ) are any polynomials in z with complex coefficients, the roots of H m ( z ) lie on a portion of a real algebraic curve whose equation is explicitly given. The proofs involve the q-analogue of the discriminant, a concept introduced by Mourad Ismail.
Keywords :
Zero distribution , Chebyshev polynomials , generating function , Three-term recurrence
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564065
Link To Document :
بازگشت