Title of article :
Global Łojasiewicz-type inequality for non-degenerate polynomial maps
Author/Authors :
?inh، نويسنده , , S? Tiê?p and Hà، نويسنده , , Huy Vui and Ph?m، نويسنده , , Ti?n S?n and Tha?o، نويسنده , , Nguy?n Th?، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Abstract :
Let F : = ( f 1 , … , f p ) : R n → R p be a polynomial map. This paper studies the existence of the following global Łojasiewicz-type inequality ‖ F ( x ) ‖ α + ‖ F ( x ) ‖ β ⩾ c d ( x , F − 1 ( 0 ) ) for all x ∈ R n , for some constants c > 0 , α > 0 , and β > 0 . We show that the above inequality holds if one of the following conditions is satisfied:(i)
onvenient and Khovanskii non-degenerate at infinity;
onvenient and non-degenerate at infinity;
ikhailov–Gindikin non-degenerate.
er, in cases (ii) and (iii), the exponents α and β can be determined explicitly.
Keywords :
?ojasiewicz inequality , Newton polyhedron , Non-degenerate polynomial maps
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications