Title of article :
Besov and Triebel–Lizorkin spaces associated with non-negative self-adjoint operators
Author/Authors :
Hu، نويسنده , , Guorong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Abstract :
Let ( X , ρ ) be a locally compact metric space endowed with a doubling measure μ, and L be a non-negative self-adjoint operator on L 2 ( X , d μ ) . Assume that the semigroup P t = e − t L generated by L consists of integral operators with (heat) kernel p t ( x , y ) enjoying Gaussian upper bound but having no information on the regularity in the variables x and y. In this paper, we introduce Besov and Triebel–Lizorkin spaces associated with L , and present an atomic decomposition of these function spaces.
Keywords :
Besov space , Triebel–Lizorkin space , Metric measure space , Heat kernel , atom , Peetre maximal function
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications