Title of article :
The variable exponent Sobolev capacity and quasi-fine properties of Sobolev functions in the case
Author/Authors :
Hakkarainen، نويسنده , , Heikki and Nuortio، نويسنده , , Matti، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
13
From page :
168
To page :
180
Abstract :
In this article we extend the known results concerning the subadditivity of capacity and the Lebesgue points of functions of the variable exponent Sobolev spaces to cover also the case p − = 1 . We show that the variable exponent Sobolev capacity is subadditive for variable exponents satisfying 1 ⩽ p < ∞ . Furthermore, we show that if the exponent is log-Hölder continuous, then the functions of the variable exponent Sobolev spaces have Lebesgue points quasieverywhere and they have quasicontinuous representatives also in the case p − = 1 . To gain these results we develop methods that are not reliant on reflexivity or maximal function arguments.
Keywords :
Capacity , Sobolev capacity , Variable exponent , Lebesgue points , Quasicontinuity , Non-uniformly convex energy
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564215
Link To Document :
بازگشت