Title of article :
Differentiability of bizonal positive definite kernels on complex spheres
Author/Authors :
Menegatto، نويسنده , , V.A.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
11
From page :
189
To page :
199
Abstract :
We prove that any continuous function with domain { z ∈ C : | z | ⩽ 1 } that generates a bizonal positive definite kernel on the unit sphere in C q , q ⩾ 3 , is continuously differentiable in { z ∈ C : | z | < 1 } up to order q − 2 , with respect to both z and z ¯ . In particular, the partial derivatives of the function with respect to x = Re z and y = Im z exist and are continuous in { z ∈ C : | z | < 1 } up to the same order.
Keywords :
Bizonal kernels , Positive definite kernels and functions , sphere , Differentiability
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564217
Link To Document :
بازگشت