Title of article :
On fundamental harmonic analysis operators in certain Dunkl and Bessel settings
Author/Authors :
Castro، نويسنده , , Alejandro J. and Szarek، نويسنده , , Tomasz Z.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Abstract :
We consider several harmonic analysis operators in the multi-dimensional context of the Dunkl Laplacian with the underlying group of reflections isomorphic to Z 2 n (also negative values of the multiplicity function are admitted). Our investigations include maximal operators, g-functions, Lusin area integrals, Riesz transforms and multipliers of Laplace and Laplace–Stieltjes transform type. Using the general Calderón–Zygmund theory we prove that these objects are bounded in weighted L p spaces, 1 < p < ∞ , and from L 1 into weak L 1 .
Keywords :
Dunkl Laplacian , Bessel Laplacian , Dunkl transform , Hankel transform , Square function , Multiplier , Maximal operator , Riesz transform , Lusin area integral , Calder?n–Zygmund operator
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications