Title of article :
Infinitely delayed stochastic evolution equations on UMD Banach spaces
Author/Authors :
Crewe، نويسنده , , Paul، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
21
From page :
325
To page :
345
Abstract :
We prove existence and uniqueness of solutions for a class of infinitely delayed stochastic evolution equations with multiplicative noise term { d U ( t ) = ( A U ( t ) + F ( t , U t ) ) d t + G ( t , U t ) d W ( t ) , t ∈ [ 0 , T 0 ] , U ( 0 ) = X : Ω → E , U 0 = Φ : ( − ∞ , 0 ] × Ω → E , where A is the generator of an analytic semigroup on a UMD Banach space E and F and G are functions from the history of the system satisfying Lipschitz conditions. This paper is based on recent work of van Neerven et al., developing the theory of abstract stochastic evolution equations in UMD Banach spaces.
Keywords :
stochastic differential equations , Stochastic delay equations , delay differential equations , Functional differential equations , Infinite delay
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564457
Link To Document :
بازگشت