Title of article :
Maps which preserve norms of non-symmetrical quotients between groups of exponentials of Lipschitz functions
Author/Authors :
Hatori، نويسنده , , Osamu and Jiménez-Vargas، نويسنده , , A. and Villegas-Vallecillos، نويسنده , , Moisés، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
21
From page :
825
To page :
845
Abstract :
Let Φ : exp Lip ( X 1 ) → exp Lip ( X 2 ) be a surjective mapping where X 1 and X 2 are compact metric spaces. We prove that if Φ satisfies the non-symmetric-quotient norm condition for the uniform norm: ‖ g f − 1 ‖ ∞ = ‖ Φ ( g ) Φ ( f ) − 1 ‖ ∞ ( f , g ∈ exp Lip ( X 1 ) ) , then Φ is of the form Φ ( f ) ( y ) = { Φ ( 1 ) ( y ) f ( ϕ ( y ) ) if y ∈ K , Φ ( 1 ) ( y ) f ( ϕ ( y ) ) ¯ if y ∈ X 2 \ K ( f ∈ exp Lip ( X 1 ) ) , where ϕ : X 2 → X 1 is a homeomorphism and K is a closed open subset of X 2 . On the other hand, if Φ satisfies the non-symmetric-quotient norm condition for the Lipschitz algebra norm: ‖ g f − 1 ‖ ∞ + ‖ g f − 1 ‖ L = ‖ Φ ( g ) Φ ( f ) − 1 ‖ ∞ + ‖ Φ ( g ) Φ ( f ) − 1 ‖ L ( f , g ∈ exp Lip ( X 1 ) ) , we show that Φ is of the form Φ ( f ) ( y ) = Φ ( 1 ) ( y ) f ( ϕ ( y ) ) ( y ∈ X 2 , f ∈ exp Lip ( X 1 ) ) , or Φ ( f ) ( y ) = Φ ( 1 ) ( y ) f ( ϕ ( y ) ) ¯ ( y ∈ X 2 , f ∈ exp Lip ( X 1 ) ) , where ϕ : X 2 → X 1 is a surjective isometry.
Keywords :
Peaking function , Lipschitz algebra , Algebra isomorphism , Isometric isomorphism
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564488
Link To Document :
بازگشت