Title of article :
Lipschitz compact operators
Author/Authors :
Jiménez-Vargas، نويسنده , , A. and Sepulcre، نويسنده , , J.M. and Villegas-Vallecillos، نويسنده , , Moisés، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
13
From page :
889
To page :
901
Abstract :
We introduce the notion of Lipschitz compact (weakly compact, finite-rank, approximable) operators from a pointed metric space X into a Banach space E. We prove that every strongly Lipschitz p-nuclear operator is Lipschitz compact and every strongly Lipschitz p-integral operator is Lipschitz weakly compact. A theory of Lipschitz compact (weakly compact, finite-rank) operators which closely parallels the theory for linear operators is developed. In terms of the Lipschitz transpose map of a Lipschitz operator, we state Lipschitz versions of Schauder type theorems on the (weak) compactness of the adjoint of a (weakly) compact linear operator.
Keywords :
Lipschitz operator , Strongly Lipschitz p-integral operator , Strongly Lipschitz p-nuclear operator , Free Banach space
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564491
Link To Document :
بازگشت