Title of article :
The validity of the “” formula and a characterization of Asplund spaces
Author/Authors :
Jourani، نويسنده , , Abderrahim and Zakaryan، نويسنده , , Taron، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Abstract :
We show that for a given bornology β on a Banach space X the following “ lim inf ” formula lim inf x ′ ⟶ C x T β ( C ; x ′ ) ⊂ T c ( C ; x ) holds true for every closed set C ⊂ X and any x ∈ C , provided that the space X × X is ∂ β -trusted. Here T β ( C ; x ) and T c ( C ; x ) denote the β-tangent cone and the Clarke tangent cone to C at x. The trustworthiness includes spaces with an equivalent β-differentiable norm or more generally with a Lipschitz β-differentiable bump function. As a consequence, we show that for the Fréchet bornology, this “ lim inf ” formula characterizes in fact the Asplund property of X. We use our results to obtain new characterizations of T β -pseudoconvexity of X.
Keywords :
Clarke normal cone , Contingent cone , subdifferential , Asplund space , Bornology , Gâteaux (Fréchet) differentiability , Pseudoconvexity , trustworthiness , Clarke tangent cone
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications