Title of article :
On the well-posedness of higher order viscous Burgersʹ equations
Author/Authors :
Carvajal، نويسنده , , Xavier and Panthee، نويسنده , , Mahendra، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
22
From page :
1
To page :
22
Abstract :
We consider higher order viscous Burgersʹ equations with generalized nonlinearity and study the associated initial value problems for given data in the L 2 -based Sobolev spaces. We introduce appropriate time weighted spaces to derive multilinear estimates and use them in the contraction mapping principle argument to prove local well-posedness for data with Sobolev regularity below L 2 . We also prove ill-posedness for this type of models and show that the local well-posedness results are sharp in some particular cases viz., when the orders of dissipation p, and nonlinearity k + 1 , satisfy a relation p = 2 k + 1 .
Keywords :
KdV equation , Dispersive–dissipative models , initial value problem , well-posedness
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564558
Link To Document :
بازگشت