Title of article :
Lower bounds on the eigenvalue gap for vibrating strings
Author/Authors :
Chen، نويسنده , , Duo-Yuan and Huang، نويسنده , , Min-Jei Huang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Abstract :
We provide lower bounds on the eigenvalue gap for vibrating strings with fixed endpoints depending only on qualitative properties of the density function. For example, if the density ρ is symmetric on the interval [ 0 , a ] , and if λ 1 and λ 2 are the first two eigenvalues of u ″ ( x ) + λ ρ ( x ) u ( x ) = 0 in ( 0 , a ) with u ( 0 ) = u ( a ) = 0 boundary conditions, then λ 2 − λ 1 > max { 1 ∫ 0 a / 2 ( a 2 − x ) ρ ( x ) d x , π 2 ρ M a 2 } , where ρ M = max 0 ⩽ x ⩽ a ρ ( x ) . The ideas used also lead to applications in the case of monotone densities.
Keywords :
Vibrating string , Monotone density , Bessel function , Symmetric density , Lower Bound , Eigenvalue gap
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications