Title of article :
Positive solutions to integral systems with weight and Bessel potentials
Author/Authors :
Yin، نويسنده , , Hui and Lü، نويسنده , , Zhongxue، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
19
From page :
264
To page :
282
Abstract :
In this paper, we consider the integral system with weight and the Bessel potentials: { u ( x ) = ∫ R n g α ( x − y ) u ( y ) p v ( y ) q | y | σ d y , v ( x ) = ∫ R n g α ( x − y ) v ( y ) p u ( y ) q | y | σ d y , where u , v > 0 , σ ⩾ 0 , 0 < α < n , p + q = γ ⩾ 2 and g α ( x ) is the Bessel potential of order α. First, we get the integrability by regularity lifting lemma. Then we also establish the regularity of the positive solutions. Afterwards, by the method of moving planes in integral forms, we show that the positive solutions are radially symmetric and monotone decreasing about the origin. Finally, by an extension of the idea of Lei [14] and analytical techniques, we get the decay rates of solutions when | x | → ∞ .
Keywords :
Bessel potential , Integral system , Integrability , Radial symmetry , Decay rates , Method of moving planes
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564635
Link To Document :
بازگشت