Title of article :
Numerical range for random matrices
Author/Authors :
Collins، نويسنده , , Benoît and Gawron، نويسنده , , Piotr and Litvak، نويسنده , , Alexander E. and ?yczkowski، نويسنده , , Karol، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
18
From page :
516
To page :
533
Abstract :
We analyze the numerical range of high-dimensional random matrices, obtaining limit results and corresponding quantitative estimates in the non-limit case. For a large class of random matrices their numerical range is shown to converge to a disc. In particular, numerical range of complex Ginibre matrix almost surely converges to the disk of radius 2 . Since the spectrum of non-hermitian random matrices from the Ginibre ensemble lives asymptotically in a neighborhood of the unit disk, it follows that the outer belt of width 2 − 1 containing no eigenvalues can be seen as a quantification the non-normality of the complex Ginibre random matrix. We also show that the numerical range of upper triangular Gaussian matrices converges to the same disk of radius 2 , while all eigenvalues are equal to zero and we prove that the operator norm of such matrices converges to 2 e .
Keywords :
Ginibre ensemble , GUE , Numerical range , Field of values , Triangular random matrix , Gaussian random matrix
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564650
Link To Document :
بازگشت