Title of article :
Regularity for the fractional Gelfand problem up to dimension 7
Author/Authors :
Josep M. and Ros-Oton، نويسنده , , Xavier، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2014
Pages :
10
From page :
10
To page :
19
Abstract :
We study the problem ( − Δ ) s u = λ e u in a bounded domain Ω ⊂ R n , where λ is a positive parameter. More precisely, we study the regularity of the extremal solution to this problem. Our main result yields the boundedness of the extremal solution in dimensions n ≤ 7 for all s ∈ ( 0 , 1 ) whenever Ω is, for every i = 1 , . . . , n , convex in the x i -direction and symmetric with respect to { x i = 0 } . The same holds if n = 8 and s ≳ 0.28206 . . . , or if n = 9 and s ≳ 0.63237 . . . . These results are new even in the unit ball Ω = B 1 .
Keywords :
Fractional Laplacian , Gelfand problem , Extremal solution
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2014
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1564684
Link To Document :
بازگشت