Title of article :
Towards theory of generic Principal Component Analysis
Author/Authors :
Torokhti، نويسنده , , Anatoli and Friedland، نويسنده , , Shmuel، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Abstract :
In this paper, we consider a technique called the generic Principal Component Analysis (PCA) which is based on an extension and rigorous justification of the standard PCA. The generic PCA is treated as the best weighted linear estimator of a given rank under the condition that the associated covariance matrix is singular. As a result, the generic PCA is constructed in terms of the pseudo-inverse matrices that imply a development of the special technique. In particular, we give a solution of the new low-rank matrix approximation problem that provides a basis for the generic PCA. Theoretical aspects of the generic PCA are carefully studied.
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis