Title of article :
Inference for multivariate normal mixtures
Author/Authors :
Chen، نويسنده , , Jiahua and Tan، نويسنده , , Xianming، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Pages :
17
From page :
1367
To page :
1383
Abstract :
Multivariate normal mixtures provide a flexible model for high-dimensional data. They are widely used in statistical genetics, statistical finance, and other disciplines. Due to the unboundedness of the likelihood function, classical likelihood-based methods, which may have nice practical properties, are inconsistent. In this paper, we recommend a penalized likelihood method for estimating the mixing distribution. We show that the maximum penalized likelihood estimator is strongly consistent when the number of components has a known upper bound. We also explore a convenient EM-algorithm for computing the maximum penalized likelihood estimator. Extensive simulations are conducted to explore the effectiveness and the practical limitations of both the new method and the ratified maximum likelihood estimators. Guidelines are provided based on the simulation results.
Keywords :
Penalized maximum likelihood estimator , Strong consistency , Multivariate normal mixture
Journal title :
Journal of Multivariate Analysis
Serial Year :
2009
Journal title :
Journal of Multivariate Analysis
Record number :
1565087
Link To Document :
بازگشت