Title of article :
Testing independence in nonparametric regression
Author/Authors :
Neumeyer، نويسنده , , Natalie، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Abstract :
We propose a new test for independence of error and covariate in a nonparametric regression model. The test statistic is based on a kernel estimator for the L 2 -distance between the conditional distribution and the unconditional distribution of the covariates. In contrast to tests so far available in literature, the test can be applied in the important case of multivariate covariates. It can also be adjusted for models with heteroscedastic variance. Asymptotic normality of the test statistic is shown. Simulation results and a real data example are presented.
Keywords :
Bootstrap , Goodness-of-Fit , Kernel estimator , Test for independence , Nonparametric regression
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis