Title of article :
Decomposability of high-dimensional diversity measures: Quasi--statistics, martingales and nonstandard asymptotics
Author/Authors :
Pinheiro، نويسنده , , Aluيsio and Sen، نويسنده , , Pranab Kumar and Pinheiro، نويسنده , , Hildete Prisco Pinheiro، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Pages :
12
From page :
1645
To page :
1656
Abstract :
In analyses of complex diversity, especially that arising in genetics, genomics, ecology and other high-dimensional (and sometimes low-sample-size) data models, typically subgroup decomposability (analogous to ANOVA decomposability) arises. For group divergence of diversity measures in a high-dimension low-sample-size scenario, it is shown that Hamming distance type statistics lead to a general class of quasi- U -statistics having, under the hypothesis of homogeneity, a martingale (array) property, providing a key to the study of general (nonstandard) asymptotics. Neither the stochastic independence nor homogeneity of the marginal probability laws plays a basic role. A genomic MANOVA model is presented as an illustration.
Keywords :
Orthogonal system , Permutation measure , Second-order asymptotics , Categorical data , dependence , DNA , genomics , Hamming distance , Second-order decomposability
Journal title :
Journal of Multivariate Analysis
Serial Year :
2009
Journal title :
Journal of Multivariate Analysis
Record number :
1565137
Link To Document :
بازگشت