Title of article :
High-dimensional asymptotic expansion of LR statistic for testing intraclass correlation structure and its error bound
Author/Authors :
Kato، نويسنده , , Naohiro and Yamada، نويسنده , , Takayuki and Fujikoshi، نويسنده , , Yasunori، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Abstract :
This paper deals with the null distribution of a likelihood ratio (LR) statistic for testing the intraclass correlation structure. We derive an asymptotic expansion of the null distribution of the LR statistic when the number of variable p and the sample size N approach infinity together, while the ratio p / N is converging on a finite nonzero limit c ∈ ( 0 , 1 ) . Numerical simulations reveal that our approximation is more accurate than the classical χ 2 -type and F -type approximations as p increases in value. Furthermore, we derive a computable error bound for its asymptotic expansion.
Keywords :
Error Bound , asymptotic expansion , Intraclass correlation structure , Likelihood ratio statistic , High-dimensional approximation
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis