Title of article :
The extent of the maximum likelihood estimator for the extreme value index
Author/Authors :
Zhou، نويسنده , , Chen، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Abstract :
In extreme value analysis, staring from Smith (1987) [1], the maximum likelihood procedure is applied in estimating the shape parameter of tails—the extreme value index γ . For its theoretical properties, Zhou (2009) [12] proved that the maximum likelihood estimator eventually exists and is consistent for γ > − 1 under the first order condition. The combination of Zhou (2009) [12] and Drees et al (2004) [11] provides the asymptotic normality under the second order condition for γ > − 1 / 2 . This paper proves the asymptotic normality for − 1 < γ ≤ − 1 / 2 and the non-consistency for γ < − 1 . These results close the discussion on the theoretical properties of the maximum likelihood estimator.
Keywords :
Maximum likelihood , Asymptotic normality , Extreme value index
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis