Title of article :
Statistical inference of minimum BD estimators and classifiers for varying-dimensional models
Author/Authors :
Zhang، نويسنده , , Chunming، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Abstract :
Stochastic modeling for large-scale datasets usually involves a varying-dimensional model space. This paper investigates the asymptotic properties, when the number of parameters grows with the available sample size, of the minimum- BD estimators and classifiers under a broad and important class of Bregman divergence ( BD ), which encompasses nearly all of the commonly used loss functions in the regression analysis, classification procedures and machine learning literature. Unlike the maximum likelihood estimators which require the joint likelihood of observations, the minimum-BD estimators are useful for a range of models where the joint likelihood is unavailable or incomplete. Statistical inference tools developed for the class of large dimensional minimum- BD estimators and related classifiers are evaluated via simulation studies, and are illustrated by analysis of a real dataset.
Keywords :
A diverging number of parameters , Exponential family , Loss function , Optimal Bayes rule , Hemodynamic response function
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis