Title of article :
From Archimedean to Liouville copulas
Author/Authors :
McNeil، نويسنده , , Alexander J. and Ne?lehov?، نويسنده , , Johanna، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Abstract :
We use a recent characterization of the d -dimensional Archimedean copulas as the survival copulas of d -dimensional simplex distributions (McNeil and Nešlehová (2009) [1]) to construct new Archimedean copula families, and to examine the relationship between their dependence properties and the radial parts of the corresponding simplex distributions. In particular, a new formula for Kendall’s tau is derived and a new dependence ordering for non-negative random variables is introduced which generalises the Laplace transform order. We then generalise the Archimedean copulas to obtain Liouville copulas, which are the survival copulas of Liouville distributions and which are non-exchangeable in general. We derive a formula for Kendall’s tau of Liouville copulas in terms of the radial parts of the corresponding Liouville distributions.
Keywords :
stochastic ordering , ? 1 -norm symmetric distribution , Liouville distribution , Simplex distribution , Williamson d -transform , Kendall’s tau , Laplace transform , Archimedean copula , dependence ordering , stochastic simulation
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis