Title of article :
A class of models for uncorrelated random variables
Author/Authors :
Ebrahimi، نويسنده , , Nader and Hamedani، نويسنده , , G.G. and Soofi، نويسنده , , Ehsan S. and Volkmer، نويسنده , , Hans، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Pages :
13
From page :
1859
To page :
1871
Abstract :
We consider the class of multivariate distributions that gives the distribution of the sum of uncorrelated random variables by the product of their marginal distributions. This class is defined by a representation of the assumption of sub-independence, formulated previously in terms of the characteristic function and convolution, as a weaker assumption than independence for derivation of the distribution of the sum of random variables. The new representation is in terms of stochastic equivalence and the class of distributions is referred to as the summable uncorrelated marginals (SUM) distributions. The SUM distributions can be used as models for the joint distribution of uncorrelated random variables, irrespective of the strength of dependence between them. We provide a method for the construction of bivariate SUM distributions through linking any pair of identical symmetric probability density functions. We also give a formula for measuring the strength of dependence of the SUM models. A final result shows that under the condition of positive or negative orthant dependence, the SUM property implies independence.
Keywords :
convolution , Farlie–Gumbel–Morgenstern , Kendall’s tau , mutual information , Sub-independence , Stochastic equivalence , Spearman’s rho , dependence
Journal title :
Journal of Multivariate Analysis
Serial Year :
2010
Journal title :
Journal of Multivariate Analysis
Record number :
1565469
Link To Document :
بازگشت