Title of article :
Conditional and unconditional methods for selecting variables in linear mixed models
Author/Authors :
Kubokawa، نويسنده , , Tatsuya، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2011
Pages :
20
From page :
641
To page :
660
Abstract :
In the problem of selecting the explanatory variables in the linear mixed model, we address the derivation of the (unconditional or marginal) Akaike information criterion (AIC) and the conditional AIC (cAIC). The covariance matrices of the random effects and the error terms include unknown parameters like variance components, and the selection procedures proposed in the literature are limited to the cases where the parameters are known or partly unknown. In this paper, AIC and cAIC are extended to the situation where the parameters are completely unknown and they are estimated by the general consistent estimators including the maximum likelihood (ML), the restricted maximum likelihood (REML) and other unbiased estimators. We derive, related to AIC and cAIC, the marginal and the conditional prediction error criteria which select superior models in light of minimizing the prediction errors relative to quadratic loss functions. Finally, numerical performances of the proposed selection procedures are investigated through simulation studies.
Keywords :
Akaike information criterion , Best linear unbiased predictor , Fay–Herriot model , Linear mixed model , Maximum likelihood estimator , Nested error regression model , prediction error , Restricted maximum likelihood estimator , Small Area Estimation
Journal title :
Journal of Multivariate Analysis
Serial Year :
2011
Journal title :
Journal of Multivariate Analysis
Record number :
1565572
Link To Document :
بازگشت