Title of article :
Parametric estimation of a bivariate stable Lévy process
Author/Authors :
Esmaeili، نويسنده , , Habib and Klüppelberg، نويسنده , , Claudia، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2011
Pages :
13
From page :
918
To page :
930
Abstract :
We propose a parametric model for a bivariate stable Lévy process based on a Lévy copula as a dependence model. We estimate the parameters of the full bivariate model by maximum likelihood estimation. As an observation scheme we assume that we observe all jumps larger than some ε > 0 and base our statistical analysis on the resulting compound Poisson process. We derive the Fisher information matrix and prove asymptotic normality of all estimates when the truncation point ε → 0 . A simulation study investigates the loss of efficiency because of the truncation.
Keywords :
Dependence structure , Maximum likelihood estimation , Multivariate stable process , Parameter estimation , Lévy copula , Fisher information matrix
Journal title :
Journal of Multivariate Analysis
Serial Year :
2011
Journal title :
Journal of Multivariate Analysis
Record number :
1565592
Link To Document :
بازگشت