Title of article :
Empirical Bayes predictive densities for high-dimensional normal models
Author/Authors :
Xu، نويسنده , , Xinyi and Zhou، نويسنده , , Erik Dunke-Jacobs، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2011
Abstract :
This paper addresses the problem of estimating the density of a future outcome from a multivariate normal model. We propose a class of empirical Bayes predictive densities and evaluate their performances under the Kullback–Leibler (KL) divergence. We show that these empirical Bayes predictive densities dominate the Bayesian predictive density under the uniform prior and thus are minimax under some general conditions. We also establish the asymptotic optimality of these empirical Bayes predictive densities in infinite-dimensional parameter spaces through an oracle inequality.
Keywords :
Shrinkage estimation , Empirical Bayes , Minimaxity , Kullback–Leibler loss , Oracle inequality , Predictive density
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis