Title of article :
An adaptive estimator of the memory parameter and the goodness-of-fit test using a multidimensional increment ratio statistic
Author/Authors :
Bardet، نويسنده , , Jean-Marc and Dola، نويسنده , , Béchir، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Pages :
19
From page :
222
To page :
240
Abstract :
The increment ratio (IR) statistic was first defined and studied in Surgailis et al. (2007) [19] for estimating the memory parameter either of a stationary or an increment stationary Gaussian process. Here three extensions are proposed in the case of stationary processes. First, a multidimensional central limit theorem is established for a vector composed by several IR statistics. Second, a goodness-of-fit χ 2 -type test can be deduced from this theorem. Finally, this theorem allows to construct adaptive versions of the estimator and the test which are studied in a general semiparametric frame. The adaptive estimator of the long-memory parameter is proved to follow an oracle property. Simulations attest to the interesting accuracies and robustness of the estimator and the test, even in the non Gaussian case.
Keywords :
Long-memory Gaussian processes , Goodness-of-fit test , Estimation of the memory parameter , Minimax adaptive estimator
Journal title :
Journal of Multivariate Analysis
Serial Year :
2012
Journal title :
Journal of Multivariate Analysis
Record number :
1565677
Link To Document :
بازگشت