Title of article :
Some aspects of modeling dependence in copula-based Markov chains
Author/Authors :
Longla، نويسنده , , Martial and Peligrad، نويسنده , , Magda، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Pages :
7
From page :
234
To page :
240
Abstract :
Dependence coefficients have been widely studied for Markov processes defined by a set of transition probabilities and an initial distribution. This work clarifies some aspects of the theory of dependence structure of Markov chains generated by copulas that are useful in time series econometrics and other applied fields. The main aim of this paper is to clarify the relationship between the notions of geometric ergodicity and geometric ρ -mixing; namely, to point out that for a large number of well known copulas, such as Clayton, Gumbel or Student, these notions are equivalent. Some of the results published in the last years appear to be redundant if one takes into account this fact. We apply this equivalence to show that any mixture of Clayton, Gumbel or Student copulas generates both geometrically ergodic and geometric ρ -mixing stationary Markov chains, answering in this way an open question in the literature. We shall also point out that a sufficient condition for ρ -mixing, used in the literature, actually implies Doeblin recurrence.
Keywords :
Reversible processes , Mixing conditions , Markov chains , Copula
Journal title :
Journal of Multivariate Analysis
Serial Year :
2012
Journal title :
Journal of Multivariate Analysis
Record number :
1565914
Link To Document :
بازگشت