Title of article :
Dimension reduction for the conditional th moment via central solution space
Author/Authors :
Dong، نويسنده , , Yuexiao and Yu، نويسنده , , Zhou، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2012
Pages :
12
From page :
207
To page :
218
Abstract :
Sufficient dimension reduction aims at finding transformations of predictor X without losing any regression information of Y versus X . If we are only interested in the information contained in the mean function or the k th moment function of Y given X , estimation of the central mean space or the central k th moment space becomes our focus. However, existing estimators for the central mean space and the central k th moment space require a linearity assumption on the predictor distribution. In this paper, we relax this stringent assumption via the notion of central k th moment solution space. Simulation studies and analysis of the Massachusetts college data set confirm that our proposed estimators of the central k th moment space outperform existing methods for non-elliptically distributed predictors.
Keywords :
Central solution space , Central k th moment space , Dimension reduction space , Non-elliptical distribution
Journal title :
Journal of Multivariate Analysis
Serial Year :
2012
Journal title :
Journal of Multivariate Analysis
Record number :
1565976
Link To Document :
بازگشت