Title of article :
Likelihood ratio tests for positivity in polynomial regressions
Author/Authors :
Kato، نويسنده , , Naohiro and Kuriki، نويسنده , , Satoshi، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2013
Abstract :
A polynomial that is nonnegative over a given interval is called a positive polynomial. The set of such positive polynomials forms a closed convex cone K . In this paper, we consider the likelihood ratio test for the hypothesis of positivity that the estimand polynomial regression curve is a positive polynomial. By considering hierarchical hypotheses including the hypothesis of positivity, we define nested likelihood ratio tests, and derive their null distributions as mixtures of chi-square distributions by using the volume-of-tubes method. The mixing probabilities are obtained by utilizing the parameterizations for the cone K and its dual provided in the framework of Tchebycheff systems for polynomials of degree at most 4. For polynomials of degree greater than 4, the upper and lower bounds for the null distributions are provided. Moreover, we propose associated simultaneous confidence bounds for polynomial regression curves. Regarding computation, we demonstrate that symmetric cone programming is useful to obtain the test statistics. As an illustrative example, we conduct data analysis on growth curves of two groups. We examine the hypothesis that the growth rate (the derivative of growth curve) of one group is always higher than the other.
Keywords :
Symmetric cone programming , Cone of positive polynomials , Moment cone , Tchebycheff system , Chi-bar square distribution , Volume-of-tubes method
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis