Title of article :
Quadratic inference functions for partially linear single-index models with longitudinal data
Author/Authors :
Lai، نويسنده , , Peng and Li، نويسنده , , Gaorong and Lian، نويسنده , , Heng، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2013
Pages :
13
From page :
115
To page :
127
Abstract :
In this paper, we consider the partially linear single-index models with longitudinal data. We propose the bias-corrected quadratic inference function (QIF) method to estimate the parameters in the model by accounting for the within-subject correlation. Asymptotic properties for the proposed estimation methods are demonstrated. A generalized likelihood ratio test is established to test the linearity of the nonparametric part. Under the null hypotheses, the test statistic follows asymptotically a χ 2 distribution. We also evaluate the finite sample performance of the proposed methods via Monte Carlo simulation studies and a real data analysis.
Keywords :
Bias correction , Longitudinal data , Partially linear single-index models , QIF , generalized likelihood ratio
Journal title :
Journal of Multivariate Analysis
Serial Year :
2013
Journal title :
Journal of Multivariate Analysis
Record number :
1566312
Link To Document :
بازگشت