Title of article :
A nonparametric empirical Bayes approach to adaptive minimax estimation
Author/Authors :
Jiang، نويسنده , , Wenhua and Zhang، نويسنده , , Cun-Hui، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2013
Pages :
14
From page :
82
To page :
95
Abstract :
The general maximum likelihood empirical Bayes (GMLEB) method has been proven to possess optimal properties and demonstrated to have superior numerical performance in the Gaussian sequence model. Although it is known that nonparametric function estimation and the Gaussian sequence models are closely related, implementation of the GMLEB in function estimation problems still awaits careful analysis. In this paper, we consider adaptive estimation to inhomogeneous smoothness. We study the extent to which the optimality properties of the GMLEB can be carried out from the Gaussian sequence model to nonparametric function estimation. We demonstrate the proposed method’s superior performance in large sample size settings.
Keywords :
Oracle inequality , Adaptive minimaxity , Nonparametric regression , Empirical Bayes , Besov ball , Threshold estimator
Journal title :
Journal of Multivariate Analysis
Serial Year :
2013
Journal title :
Journal of Multivariate Analysis
Record number :
1566441
Link To Document :
بازگشت